CARA MUDAH FUNGSI KOMPOSISI

Please log in or register to like posts.
Video

Hanya 23 Menit Dijamin langsung Jago Menguasai Bab Fungsi Komposisi

Follow instagram mathsyairozi : www.instagram.com/mathsyairozi
Like fanspage mathsyairozi : www.facebook.com/mathsyairozi

FUNGSI KOMPOSISI
Dari dua jenis fungsi f(x) dan g(x) kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan dengan “o” (komposisi/bundaran). fungsi baru yang dapat kita bentuk dari f(x) dan g(x) adalah:
(g o f)(x) artinya f dimasukkan ke g
(f o g)(x) artinya g dimasukkan ke f
Contoh Soal 1:
Diketahui f(x) = 3x – 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) …
Jawab:
(f o g)(x) = g dimasukkan ke f menggantikan x
(f o g)(x) = 3(2x)-4
(f o g)(x) = 6x – 4
(g o f)(x) = f dimasukkan ke g menggantikan x
(g o f)(x) = 2(3x-4)
(g o f)(x) = 6x-8

SIFAT-SIFAT FUNGSI KOMPOSISI
Fungsi komposisi memiliki beberapa sifat, diantaranya:
Tidak Komutatif
(g o f)(x) = (f o g)(x)
Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x)]
Fungsi Identitas I(x) = x
(f o I)(x) = (I o f)(x) = f(x)

CARA MENENTUKAN FUNGSI BILA FUNGSI KOMPOSISI DAN FUNGSI YANG LAIN DIKETAHUI

Misalkan jika fungsi f dan fungsi komposisi (f o g) atau (g o f) telah diketahui maka kita dapat menentukan fungsi g. demikian juga sebaliknya.
Contoh Soal 2
Misal fungsi komposisi (f o g) (x) = -4x + 4 dan f (x) = 2x + 2.
Tentukan fungsi g (x).
Jawab :
(f o g) (x) = -4x + 4
f (g (x)) = -4x + 4
2 (g (x)) + 2 = -4x + 4
2 g (x) = -4x + 2
g (x) = -4x + 2
2
g (x) = -2x + 1
Jadi fungsi g (x) = -2x + 1

(Visited 1 times, 1 visits today)

Reactions

0
0
0
0
0
0
Already reacted for this post.

Leave a Reply

Your email address will not be published. Required fields are marked *